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Barium titanates and barium stannate solid solutions
are widely used for manufacturing various materials
[1–5]. The solid-phase synthesis of BaTi

 

1 – 

 

x

 

Sn

 

x

 

O

 

3

 

 solid
solutions usually proceeds from TiO

 

2

 

, 

 

SnO

 

2

 

, and
BaCO

 

3

 

. In this case, a single-phase product is gener-
ated at high heat-treatment temperatures: 

 

1360–
1400°

 

C [6, 7]. The feasibility of preparing these mate-
rials at lower temperatures has been recently demon-
strated using the sol–gel process, in particular,
Pechini’s complex polymerization process [8–11].
Metal alkoxides [Ti
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],
[

 

Sn
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OC

 

3

 

H

 

7
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i

 

)

 

4

 

],

 

 and [Sn

 

(

 

CH

 

3

 

COO

 

)

 

4

 

] are, as a rule, used
in this process [12, 13]; these reagents present a few
problems (the requirement of an inert atmosphere dur-
ing the entire synthesis, high costs, and difficult prepa-
ration of the reagents because of their moisture sensi-
tivity), and it is difficult to obtain single-phase prod-
ucts. The use of chlorides (SnCl

 

4

 

 

 

·

 

 5

 

H

 

2

 

O and TiCl

 

4

 

)
avoids these problems, and makes it possible to carry
out experiments with larger amounts of reagents and to
use an inert atmosphere only at the first stage (to dis-
solve titanium chloride in alcohol).

This work studies the parameters of the sol–gel pro-
cess for the synthesis of barium titanate, barium stan-
nate, and their solid solutions proceeding from SnCl
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·
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H

 

2

 

O

 

, 

 

TiCl

 

4

 

, and BaCO

 

3

 

.

EXPERIMENTAL

Ba

 

(

 

Ti

 

1

 

 

 

–

 

 

 

x

 

Sn

 

x

 

)

 

O

 

3

 

 solid solutions were prepared by
the sol–gel process [11] using the scheme as shown in
Fig. 1 and by solid-phase reactions.

The sol–gel synthesis of fine-grained powders was
carried out as follows. Titanium chloride (high purity
grade, 0.1 mol) was dissolved in isopropanol (pure for
analysis C

 

3

 

H

 

7

 

OH, PrOH) under a dry argon atmo-

3

3

 

sphere; to the resulting yellow solution, anhydrous cit-
ric acid (pure for analysis C

 

6

 

H

 

8

 

O

 

7

 

, CA; 1 mol) was
added; and the mixture was heated at 

 

80 

 

±

 

 5°

 

C in air
until the acid completely dissolved. Then, ethylene gly-
col (pure for analysis C

 

2

 

H

 

6

 

O

 

2

 

, EG; 4 mol) was poured,
followed by addition of the required amount of SnCl

 

4

 

 

 

·

 

5

 

H

 

2

 

O (chemically pure grade) dissolved in isopropanol
and anhydrous BaCO

 

3

 

 (chemically pure grade,
0.1 mol). The resulting solution was stirred and heated
in air at 

 

135 

 

±

 

 5°

 

C until a yellow viscous polymeric gel
appeared. The gel was gradually heated to 

 

350 

 

±

 

 10°

 

C;
it polymerized to a resinous mass. Gel pyrolysis
occurred at 

 

350 

 

±

 

 10°

 

C (3 h). The product was stirred
and calcined in an Al

 

2

 

O

 

3

 

 crucible under an air atmo-
sphere at 

 

1000°

 

C for 4 h.

The reagents used for solid-phase reactions [6, 7]
were BaCO

 

3

 

, 

 

TiO

 

2

 

,

 

 and SnO

 

2

 

, all of high purity grade.
Stoichiometric amounts of the dried reagents were
blended and homogenized by corundum milling bodies
for 8 h with bidistilled water. The resulting feedstock
was dried, stirred, and heat-treated at 

 

1100°

 

C for 4 h.

The single-phase products of the sol–gel process or
solid-phase reactions were triturated with aqueous
polyvinyl alcohol and compacted to disks. Ceramics
were sintered at temperatures in the range 

 

1300–
1400°

 

C for 1 h.

Thermogravimetric studies were carried out on a
Q-1000 OD-102 derivatograph; the heating rate was
10 K/min. The phase composition of products was
determined from their powder X-ray diffraction pat-
terns, which were recorded on a DRON 4-07 diffracto-
meter (Cu

 

K

 

α

 

 radiation). The unit cell parameters and
atomic coordinates for single-phase products were
refined using the Rietveld technique. IR spectra in the
range 400–2000 cm

 

–1

 

 were recorded as potassium bro-
mide disks on a Specord M30 spectrometer.
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The particle sizes of powders and the grain sizes of

ceramics were determined on JEOL JSM-T20 and
Superprobe 733 electron microscopes.

Electrophysical properties were measured over wide
a frequancy range on a VM-560 Q-meter.

RESULTS AND DISCUSSION

Studies of the sol–gel synthesis of barium titanate,
barium stannate, and their solid solutions showed that,
in all cases, a single-phase product was produced by the
same mechanism.

According to the scheme of BaTi

 

1

 

 

 

–

 

 

 

x

 

Sn

 

x

 

O

 

3

 

 synthesis
(Fig. 1), titanium chloride dissolution in isopropanol
yields substituted titanium alkoxide [14, 15]:

TiCl

 

4

 

 + 

 

Pr

 

i

 

OH

 

  

 

TiCl

 

2

 

(

 

O

 

i

 

Pr

 

)

 

2

 

 + 

 

HCl

 

. (1)

 

Addition of ethylene glycol clarifies the solution,
which signifies the generation of a stable complex
according to reaction (2) and in agreement with data in
[16].

(2)

When tin chloride is added to the resulting solution
(which contains an excess of isopropanol and ethylene
glycol), the reactions are as reactions (1) and (2) for
titanium [17, 19]. When barium carbonate is added,
carbon dioxide is expelled, signifying the formation of
a barium complex with citric acid in agreement with
[20]:

4

3

TiCl2 OiPr( )2 4HO–CH2CH2–OH       +

         Ti OC2H4OH( )4 · PriOH 2HCl PriOH.+ +

(3)
CH2COOH

COOHHO

CH2COOH

HO

H2C

COOH

CH2COOH

O
Ba

O
H2
C OH

O O COOH
CH2COOH

+ BaCO3 + CO2 + H2O.

Stirring and heating the mixture to 135°C induces
polyetherification of citrato complexes and ethylene
glycol by reaction (4), signified by the appearance of a

2

light yellow gel and the disappearance of the ethylene
glycol smell, which also agrees with the literature [11].
A rise in temperature to 350°C induces gel pyrolysis.

1 M CA 0.1 M TiCl4

4 M FG

0.1M BaCO3

x M SnCl4 × 5H2O

Stirring,
135°C

Citratometal complex

Polyetherification

Polymeric complex

Pyrolysis, 350°C

Precursor powder

High-temperature
synthesis under air,

500–1000°C

BaTi1–xSnxO3

Fig. 1. Scheme of the sol–gel process for BaTi1 – xSnxO3
synthesis.
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(4)

Figure 2 shows thermal curves for the precursor
used to prepare a BaTi0.85Sn0.15O3 sample. There are
three weight-loss regions on the TG curve: 20–150,
250–500, and 500–750°C. The weight loss in the
range 20–200°C indicates the loss of sorbate water
from the gel.

The weight loss in the range 250–600°C is accompa-
nied by a strong exotherm at 400°C. The product of heat

treatment at 400°C is amorphous to X-rays (Fig. 3). In the
IR spectra (Fig. 4), however, there are absorption bands at
1430 and 860 cm–1 due to, respectively, the stretching and
bending vibrations of carbonate groups [21]. We may,
therefore, infer that the exotherm at 400°C is associated
with barium carbonate formation.

The insignificant weight loss (Fig. 2) in the range
500–750°C is associated with barium carbonate
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decomposition. The exotherm at ∼700°C indicates the
onset of formation of solid solution BaTi0.85Sn0.15O3.
When the heat-treatment temperature rises to 800°C,
reflections from BaTi1 – xSnxO3 appear in the X-ray dif-
fraction pattern together with BaCO3 and TiO2 reflec-
tions (Fig. 3). In the IR spectra (Fig. 4), absorption
intensities at 1430 and 860 cm–1 decrease; a further rise
in heat-treatment temperature makes them disappear.
Single-phase BaTi1 – xSnxO3 is formed after heat treat-
ment at1000°C as shown by X-ray powder diffraction
and IR spectra.

Particle sizes of powders were determined from
electron-microscopic studies (Fig. 5a). The results of
these studies show that all powders synthesized are
nanosized: particle sizes for all samples are 40–60 nm.

The X-ray diffraction patterns of single-phase sam-
ples were used to refine the unit cell parameters and
atomic coordinates (Fig. 6). The unit cell parameters
calculated for BaTi1 – xSnxO3 samples prepared by vari-
ous processes are listed in the table [22, 23]. The sam-
ples prepared by the sol–gel process have larger unit
cell parameters than those of the samples prepared by
solid-phase reactions. This fact can be explained by the
production of nanoparticles, whose sintering generates
surface defects in ceramics. Nanoparticle production is
also indicated by X-ray diffraction peak broadening
(Fig. 6).

Sintering of nanopowders generates coarse-grained
ceramics with grain sizes up to 20 µm (Fig. 5b). Finer
grains with sizes up to 1 µm are also observed in micro-
graphs; their existence increases the surface defect den-
sity.

Figure 7 shows the dielectric constant and dielectric
loss tangent as functions of temperature for solid-phase
and sol–gel samples. For the sol–gel samples, the
dielectric constants are higher than for samples pre-
pared by the solid-phase process. In the
BaTi0.85Sn0.15O3 sample prepared by the sol–gel pro-
cess, in addition, dielectric loss increases, which can
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Fig. 2. Thermoanalytical curves for the precursor used to
prepare a BaTi0.85Sn0.15O3 sample.
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Fig. 3. X-ray diffraction patterns for the precursor used to prepare a BaTi0.85Sn0.15O3 sample at various heat-treatment tempera-
tures, °C: (1) 400, (2) 700, (3) 800, (4) 900, and (5) 1000. Notation: a, TiO2; b, BaCO3; and c, BaTi0.85Sn0.15O3.
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signify the appearance of stresses in the crystal struc-
ture.

Figure 8 shows the dielectric constant and dielectric
loss tangent as functions of electric field strength for
BaTi0.85Sn0.15O3 samples. For the sol–gel sample, the
dielectric constant varies more abruptly as a function
electric field. The same is observed for the dielectric
loss tangent as a function of electric field. This can be
explained by stresses in the crystal structure, which are
in turn associated with simultaneous formation of
coarse and fine grains in the ceramics. A factor charac-
terizing quadratic nonlinearity is used as a measure of
dielectric nonlinearity: α = (1/ε)(∆ε/∆E) [24]. For the
sol–gel sample, the nonlinearity factor is six times that
for the solid-phase sample.

To summarize, we used DTA, X-ray powder diffrac-
tion, and IR spectroscopy to study the features of syn-
thesis of nanopowders and ceramics of individual com-
pounds BaTiO3 and BaSnO3 and solid solution
BaTi0.85Sn0.15O3 proceeding from SnCl4 · 5H2O, TiCl4,
and BaCO3.

Single-phase products were formed at 800°C; the
products completely became a single phase after heat
treatment at 1000°C.

We studied the electrophysical properties of
Ba(Ti1 – xSnx)O3 ceramics prepared by the sol–gel and
solid-phase processes.

The sol–gel process produces nanoparticles, which
are sintered to ceramics with high nonlinearity factors.
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Fig. 4. IR absorption spectrum of the precursor for preparing a BaTi0.85Sn0.15O3 sample at various heat-treatment temperatures, °C:
(1) 350, (2) 600, (3) 700, (4) 800, (5) 900, and (6) 1000.

100 nm

5 µm

(‡)

(b)

Fig. 5. Electron micrographs of (a) a BaSnO3 powder pre-
pared by the sol–gel process and (b) BaTi0.85Sn0.15O3
ceramics.
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Fig. 6. X-ray diffraction pattern of a BaTi0.85Sn0.15O3 sample after heat treatment at 1000°C and the results of full-profile analysis.
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Fig. 7. (a) Dielectric constant and (b) dielectric loss tangent
vs. temperature measured at 1.33 MHz for Ba(Ti1 – xSnx)O3
samples with x = (1, 2) 0.15 and (3, 4) 0.0. Samples were
prepared by (1, 3) sol–gel and (2, 4) solid-phase processes.
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Fig. 8. (a) Dielectric constant and (b) dielectric loss tangent
vs. electrical field strength measured at 1.33 MHz for a
BaTi0.85Sn0.15O3 sample prepared by (1, 3) sol–gel and
(2, 4) solid-phase processes.
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Unit cell parameters and atomic coordinates for Ba(Ti1 – xSnx)O3 samples prepared by various methods

Composition  Preparation 
method  Space group a, Å c, Å V, Å3 zBa zO1 zO2

BaTiO3 Solid-phase P4mm 3.994(1) 4.034(1) 64.41(1) 0.497(5) 0.501(3) 0.005(4)

BaTiO3 Sol–gel P4mm 4.0013(9) 4.024(1) 64.440(3) 0.485(7) 0.503(4) 0.020(9)

BaTi0.85Sn0.15O3 Solid-phase P4mm 4.013(1) 0.4019(2) 64.75(9) 0.487(5) 0.511(6) 0.036(4)

BaTi0.85Sn0.15O3 Sol–gel P4mm 4.019(1) 4.021(1) 64.98(6) 0.440(8) 0.507(7) 0.040(9)

BaSnO3 Solid-phase Pm3m 4.0109(2) – 69.41(2) – – –

BaSnO3 Sol–gel Pm3m 4.1160(3) – 69.731(1) – – –

Note: The atomic coordinates in Ba(Ti1 – xSnx)O3 samples for space group P4mm: Ba, 1b (1/2 1/2 z); Ti/Sn, 1a (0 0 0); O(1), 1a (0 0 z);
O(2), 2c (1/2 0 z) [22]; for space group Pm3m: Ba, 1b (1/2 1/2 1/2); Ti/Sn, 1a (0 0 0); O, 3d (1/2 0 0) [23].

SPELL: 1. Citratometal, 2. Polyetherification, 3. stannate, 4. frequancy


